Subject
Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture,Theoretical Computer Science,Software
Reference48 articles.
1. Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, M. Peres, Power and performance characterization and modeling of GPU-accelerated systems, in: 2014 IEEE 28th International Parallel and Distributed Processing Symposium, 2014, pp. 113–122. http://dx.doi.org/10.1109/IPDPS.2014.23.
2. AMD, HIP, 2016. URL https://github.com/GPUOpen-ProfessionalCompute-Tools/HIP.
3. AMD, HIP Data Sheet, rev. 1.7, 2016. URL https://gpuopen.com/wp-content/uploads/2016/01/7637_HIP_Datasheet_V1_7_PrintReady_US_WE.pdf.
4. An adaptive performance modeling tool for GPU architectures;Baghsorkhi;SIGPLAN Not.,2010
5. P.F. Baumeister, T. Hater, J. Kraus, D. Pleiter, P. Wahl, A performance model for GPU-accelerated fdtd applications, in: 2015 IEEE 22nd International Conference on High Performance Computing, HiPC, 2015, pp. 185–193. https://doi.org/10.1109/HiPC.2015.24.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Soar: Design and Deployment of A Smart Roadside Infrastructure System for Autonomous Driving;Proceedings of the 30th Annual International Conference on Mobile Computing and Networking;2024-05-29
2. ShaderPerFormer: Platform-independent Context-aware Shader Performance Predictor;Proceedings of the ACM on Computer Graphics and Interactive Techniques;2024-05-11
3. Starlight: A kernel optimizer for GPU processing;Journal of Parallel and Distributed Computing;2024-05
4. Predicting GPU Kernel’s Performance on Upcoming Architectures;Lecture Notes in Computer Science;2024
5. GPUscout: Locating Data Movement-related Bottlenecks on GPUs;Proceedings of the SC '23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis;2023-11-12