ShaderPerFormer: Platform-independent Context-aware Shader Performance Predictor

Author:

Liu Zitan1ORCID,Huang Yikai1ORCID,Liu Ligang1ORCID

Affiliation:

1. University of Science and Technology of China, Hefei, China

Abstract

The ability to model and predict the execution time of GPU computations is crucial for real-time graphics application development and optimization. While there are many existing methodologies for graphics programmers to provide such estimates, those methods are often vendor-dependent, require the platforms to be tested, or fail to capture the contextual influences among shader instructions. To address this challenge, we propose ShaderPerFormer, a platform-independent, context-aware deep-learning approach to model GPU performance and provide end-to-end performance predictions on a per-shader basis. To provide more accurate predictions, our method contains a separate stage to gather platform-independent shader program trace information. We also provide a dataset consisting of a total of 54,667 fragment shader performance samples on 5 different platforms. Compared to the PILR and SH baseline methods, our approach reduces the average MAPE across five platforms by 8.26% and 25.25%, respectively.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference46 articles.

1. 2019. Talvos: A dynamic-analysis framework and debugger for Vulkan/SPIR-V programs. https://github.com/talvos/talvos. Accessed: 2024-01-01.

2. uiCA

3. Facile: Fast, Accurate, and Interpretable Basic-Block Throughput Prediction

4. AMD. 2023. Radeon Graphics Profiler. https://gpuopen.com/rgp/. Accessed: 2024-01-01.

5. Analyzing CUDA workloads using a detailed GPU simulator

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3