Condition monitoring of wind turbine based on deep learning networks and kernel principal component analysis
Author:
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,General Computer Science,Control and Systems Engineering
Reference32 articles.
1. Energy consumption in machining: classification prediction and reduction strategy;Zhao;Energy,2017
2. Energy performance certification in mechanical manufacturing industry: a review and analysis;Cai;Energy Convers Manag,2019
3. Ultra-short-term wind power combined prediction based on complementary ensemble empirical mode decomposition, whale optimisation algorithm, and elman network;Zhu;Energies,2022
4. Improving the performance of grid-connected doubly fed induction generator by fault identification and diagnosis: a kernel PCA-ESMO technique;Stallon;Int Trans Electr Energy Syst,2021
5. Performance degradation assessment of a wind turbine gearbox based on multi-sensor data fusion;Pan;Mech Mach Theory,2019
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimal filter design using mountain gazelle optimizer driven by novel sparsity index and its application to fault diagnosis;Applied Acoustics;2024-11
2. A comparative study of principal component analysis and kernel principal component analysis for photogrammetric shape-based turbine blade damage analysis;Engineering Structures;2024-11
3. Fault root cause analysis using degree of change and mean variable threshold limit in non-linear dynamic distillation column;Process Safety and Environmental Protection;2024-09
4. A novel adaptive generalized domain data fusion-driven kernel sparse representation classification method for intelligent bearing fault diagnosis;Expert Systems with Applications;2024-08
5. A review of artificial intelligence applications in wind turbine health monitoring;International Journal of Sustainable Energy;2024-05-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3