Ultra-Short-Term Wind Power Combined Prediction Based on Complementary Ensemble Empirical Mode Decomposition, Whale Optimisation Algorithm, and Elman Network

Author:

Zhu Anfeng,Zhao Qiancheng,Wang Xian,Zhou LingORCID

Abstract

Accurate wind power forecasting helps relieve the regulation pressure of a power system, which is of great significance to the power system’s operation. However, achieving satisfactory results in wind power forecasting is highly challenging due to the random volatility characteristics of wind power sequences. This study proposes a novel ultra-short-term wind power combined prediction method based on complementary ensemble empirical mode decomposition, the whale optimization algorithm (WOA), and the Elman neural network model. The model can not only solve the phenomenon of easy modal mixing in decomposition but also avoid the problems of reconstruction error and low efficiency in the decomposition process. Furthermore, a new metaheuristic algorithm, WOA, was introduced to optimize the model and improve the accuracy of wind power prediction. Considering a wind farm as an example, several wind turbines were selected to simulate and analyse wind power by using the established prediction model, and the experimental results suggest that the proposed method has a higher prediction accuracy of ultra-short-term wind power than other prediction models.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3