1. Elshawi, R., Maher, M, Sakr, S., 2019. Automated machine learning: State-of-the-art and open challenges URL: http://arxiv.org/abs/1906.02287, arXiv: 1906.02287.
2. Evans, B.P., Xue, B., Zhang, M., 2020. An adaptive and near parameter-free evolutionary computation approach towards true automation in automl. arXiv preprint arXiv:2001.10178.
3. Garciarena, U., Santana, R., Mendiburu, A., 2018. Analysis of the complexity of the automatic pipeline generation problem, in: 2018 IEEE Congress on Evolutionary Computation (CEC), IEEE. pp. 1--8.
4. Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., Vanschoren, J., 2019. An open source automl benchmark. arXiv preprint arXiv: 1907.00909.
5. Hagberg, A., Swart, P., S Chult, D., 2008. Exploring network structure, dynamics, and function using NetworkX. Technical Report. Los Alamos National Lab.(LANL), Los Alamos, NM (United States).