Author:
Sarafanov Mikhail,Nikitin Nikolay O.,Kalyuzhnaya Anna V.
Publisher
Springer International Publishing
Reference13 articles.
1. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(1), 1–12 (2018)
2. Ding, Z., Mei, G., Cuomo, S., Li, Y., Xu, N.: Comparison of estimating missing values in IoT time series data using different interpolation algorithms. Int. J. Parallel Prog. 48(3), 534–548 (2020)
3. Lepot, M., Aubin, J.B., Clemens, F.H.: Interpolation in time series: an introductive overview of existing methods, their performance criteria and uncertainty assessment. Water 9(10), 796 (2017)
4. Loukopoulos, P., et al.: Dealing with missing data for prognostic purposes. In: 2016 Prognostics and System Health Management Conference (PHM-Chengdu), pp. 1–5 (2016)
5. Lukoseviciute, K., Ragulskis, M.: Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems. Neurocomputing 73(10–12), 2077–2088 (2010)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献