1. Androutsopoulos, I., Koutsias, J., Chandrinos, K.V., Paliouras, G., Spyropoulos, C.D., 2000. An evaluation of Naive Bayesian anti-spam filtering. In: Potamias, G., Moustakis, V., van Someren, M. (Eds.), Proceedings of Workshop on Machine Learning in the New Information Age, Barcelona, pp. 9–17.
2. Automated learning of decision rules for text categorization;Apte;ACM Trans. Inf. Syst.,1994
3. Berger, H., Köhle, M., Merkl, D., 2005. On the impact of document representation on classifier performance in e-mail categorization. In: Kaschek, R., Mayr, H.C., Liddle, S.W. (Eds.), Proceedings of International Conference on Information Systems Technology and its Applications, New Zealand, pp. 19–30.
4. An empirical comparison of text categorization methods;Cardoso-Cachopo,2003
5. Carpinter, J.M., 2005. Evaluating ensemble classifiers for spam filtering. Technical Report, University of Canterbury.