A lifelong spam emails classification model

Author:

Mohammad Rami Mustafa A.

Abstract

Spam emails classification using data mining and machine learning approaches has enticed the researchers' attention duo to its obvious positive impact in protecting internet users. Several features can be used for creating data mining and machine learning based spam classification models. Yet, spammers know that the longer they will use the same set of features for tricking email users the more probably the anti-spam parties might develop tools for combating this kind of annoying email messages. Spammers, so, adapt by continuously reforming the group of features utilized for composing spam emails. For that reason, even though traditional classification methods possess sound classification results, they were ineffective for lifelong classification of spam emails duo to the fact that they might be prone to the so-called “Concept Drift”. In the current study, an enhanced model is proposed for ensuring lifelong spam classification model. For the evaluation purposes, the overall performance of the suggested model is contrasted against various other stream mining classification techniques. The results proved the success of the suggested model as a lifelong spam emails classification method.

Publisher

Emerald

Subject

Computer Science Applications,Information Systems,Software

Reference82 articles.

1. Tutorial and critical analysis of phishing websites methods;Comput. Sci. Rev.,2015

2. Intelligent rule based phishing websites classification;IET Inf. Secur.,2013

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel interpretable and robust web-based AI platform for phishing email detection;Computers and Electrical Engineering;2024-12

2. Unsolicited Email Filtering;2024 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT);2024-07-04

3. A Novel Approach for Spam Detection Using Natural Language Processing With AMALS Models;IEEE Access;2024

4. Click fraud detection for online advertising using machine learning;Egyptian Informatics Journal;2023-07

5. Classifying spam emails using agglomerative hierarchical clustering and a topic-based approach;Applied Soft Computing;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3