Abstract
Spam emails classification using data mining and machine learning approaches has enticed the researchers' attention duo to its obvious positive impact in protecting internet users. Several features can be used for creating data mining and machine learning based spam classification models. Yet, spammers know that the longer they will use the same set of features for tricking email users the more probably the anti-spam parties might develop tools for combating this kind of annoying email messages. Spammers, so, adapt by continuously reforming the group of features utilized for composing spam emails. For that reason, even though traditional classification methods possess sound classification results, they were ineffective for lifelong classification of spam emails duo to the fact that they might be prone to the so-called “Concept Drift”. In the current study, an enhanced model is proposed for ensuring lifelong spam classification model. For the evaluation purposes, the overall performance of the suggested model is contrasted against various other stream mining classification techniques. The results proved the success of the suggested model as a lifelong spam emails classification method.
Subject
Computer Science Applications,Information Systems,Software
Reference82 articles.
1. Tutorial and critical analysis of phishing websites methods;Comput. Sci. Rev.,2015
2. Intelligent rule based phishing websites classification;IET Inf. Secur.,2013
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献