1. Agarwal, S., Roth, D., 2002. Learning a sparse representation for object detection. In: European Conf. on Computer Vision, 2002, Copenhagen, pp. 113–130.
2. Altun, O., 2010. İlgi Bölgeleri ve Yerel Tanımlayıcılar ile Genelleştirilmiş Hough Dönüşümü ve En Az Eylemsizlik Ekseni Tabanli Hızli Hizalama Yaklaşımı ile Türk İşaret Dili Tanıma Sistemi, Computer Engineering. Yildiz Teknik Üniversitesi, İstanbul.
3. Altun, O., Albayrak, S., Ekinci, A., Bükün, B., 2006. Turkish fingerspelling recognition system using axis of least inertia based fast alignment. In: AI 2006:Advances in Artificial Intelligence. LNCS 4304/2006, pp. 473–481.
4. Generalizing the hough transform to detect arbitrary shapes;Ballard;Pattern Recognition,1981
5. Beinglass, A., Wolfson, H.J., 1991. Articulated Object Recognition or: How to Generalize the Generalized Hough Transform, IEEE Computer Vision and Pattern Recognition, 1991, Maui, HI, USA pp. 461–466.