AUTOMATIC ARABIC SIGN LANGUAGE RECOGNITION: A REVIEW, TAXONOMY, OPEN CHALLENGES, RESEARCH ROADMAP AND FUTURE DIRECTIONS

Author:

Al-Shamayleh Ahmad Sami,Ahmad Rodina,Jomhari Nazean,M. Abushariah Mohammad A.

Abstract

Sign language is still the best communication mean between the deaf and hearing impaired citizens. Due to the advancements in technology, we are able to find various research attempts and efforts on Automatic Sign Language Recognition (ASLR) technology for many languages including the Arabic language. Such attempts have simplified and assisted the interpretation between spoken and sign languages. In fact, the technologies that translate between spoken and sign languages have become popular today. Being the first comprehensive and up-to-date review that studies the state-of-the-art ASLR in perspective to Arabic Sign Language Recognition (ArSLR), this review is a contribution to ArSLR research community. In this paper, the research background and fundamentals of ArSLR are provided. ArSLR research taxonomies, databases, open challenges, future research trends, and directions, and a roadmap to ArSLR research are presented. This review investigates two major taxonomies. The primary taxonomy that is related to the capturing mechanism of the gestures for ArSLR, which can be either a Vision-Based Recognition (VBR) approach or Sensor-Based Recognition (SBR) approach. The secondary taxonomy that is related to the type and task of the gestures for ArSLR, which can be either the Arabic alphabet, isolated words, or continuous sign language recognition. In addition, less research attempts have been directed towards Arabic continuous sign language recognition task compared to other tasks, which marks a research gap that can be considered by the research community. To the best of our knowledge, all previous research attempts and reviews on sign language recognition for ArSL used forehand signs. This shows that the backhand signs have not been considered for ArSL tasks, which creates another important research gap to be filled up. Therefore, we recommend more research initiatives to contribute to these gaps by using an SBR approach for signers' dependent and independent approaches.

Publisher

Univ. of Malaya

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3