1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems, software available from tensorflow.org. https://www.tensorflow.org/.
2. Pro Machine Learning Algorithms;Ayyadevara,2018
3. Beggiato, M., Krems, J.F., 2013. Sequence analysis of glance patterns to predict lane changes on urban arterial roads, 6. Tagung Fahrerassistenzsysteme.
4. Adaptive fuzzy pattern classification for the online detection of driver lane change intention;Bocklisch;Neurocomputing,2017
5. Time-to-lane-change prediction with deep learning;Dang,2017