Advances in Clustering Collaborative Filtering by means of Fuzzy C-means and trust
Author:
Publisher
Elsevier BV
Subject
Artificial Intelligence,Computer Science Applications,General Engineering
Reference32 articles.
1. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions;Adomavicius;IEEE Transactions on Knowledge and Data Engineering,2005
2. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem;Ahn;Information Sciences,2008
3. Trust based recommender system using ant colony for trust computation;Bedi;Expert Systems with Applications,2012
4. Birtolo, C., Ronca, D., Armenise, R., & Ascione, M. (2011). Personalized suggestions by means of collaborative filtering: A comparison of two different model-based techniques, In NaBIC, IEEE (pp. 444–450).
5. Birtolo, C., Ronca, D., & Armenise, R. (2011). Improving accuracy of recommendation system by means of item-based fuzzy clustering collaborative filtering. In 11th International conference on intelligent systems design and applications (ISDA), Nov. 2011 (pp. 100–106). doi:10.1109/ISDA.2011.6121638.
Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Design of a dynamic and robust recommender system based on item context, trust, rating matrix and rating time using social networks analysis;Journal of King Saud University - Computer and Information Sciences;2024-02
2. An Improved Robust Fuzzy Local Information K-Means Clustering Algorithm for Diabetic Retinopathy Detection;IEEE Access;2024
3. An adaptive two-stage consensus reaching process based on heterogeneous judgments and social relations for large-scale group decision making;Information Sciences;2023-10
4. T&TRS: robust collaborative filtering recommender systems against attacks;Multimedia Tools and Applications;2023-09-18
5. Micro‐segmentation of retinal image lesions in diabetic retinopathy using energy‐based fuzzy C‐Means clustering (EFM‐FCM);Microscopy Research and Technique;2023-09-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3