Micro‐segmentation of retinal image lesions in diabetic retinopathy using energy‐based fuzzy C‐Means clustering (EFM‐FCM)

Author:

Naz Huma1,Nijhawan Rahul2,Ahuja Neelu Jyothi1,Saba Tanzila3,Alamri Faten S.4,Rehman Amjad3

Affiliation:

1. Department of Computer Science University of Petroleum and Energy Studies Dehradun India

2. Thapar Institute of Engineering and Technology Patiala, Punjab India

3. Artificial Intelligence and Data Analytics Lab Prince Sultan University Riyadh Saudi Arabia

4. Department of Mathematical Sciences College of Science, Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia

Abstract

AbstractDiabetic retinopathy (DR) is a prevalent cause of global visual impairment, contributing to approximately 4.8% of blindness cases worldwide as reported by the World Health Organization (WHO). The condition is characterized by pathological abnormalities in the retinal layer, including microaneurysms, vitreous hemorrhages, and exudates. Microscopic analysis of retinal images is crucial in diagnosing and treating DR. This article proposes a novel method for early DR screening using segmentation and unsupervised learning techniques. The approach integrates a neural network energy‐based model into the Fuzzy C‐Means (FCM) algorithm to enhance convergence criteria, aiming to improve the accuracy and efficiency of automated DR screening tools. The evaluation of results includes the primary dataset from the Shiva Netralaya Centre, IDRiD, and DIARETDB1. The performance of the proposed method is compared against FCM, EFCM, FLICM, and M‐FLICM techniques, utilizing metrics such as accuracy in noiseless and noisy conditions and average execution time. The results showcase auspicious performance on both primary and secondary datasets, achieving accuracy rates of 99.03% in noiseless conditions and 93.13% in noisy images, with an average execution time of 16.1 s. The proposed method holds significant potential in medical image analysis and could pave the way for future advancements in automated DR diagnosis and management.Research Highlights A novel approach is proposed in the article, integrating a neural network energy‐based model into the FCM algorithm to enhance the convergence criteria and the accuracy of automated DR screening tools. By leveraging the microscopic characteristics of retinal images, the proposed method significantly improves the accuracy of lesion segmentation, facilitating early detection and monitoring of DR. The evaluation of the method's performance includes primary datasets from reputable sources such as the Shiva Netralaya Centre, IDRiD, and DIARETDB1, demonstrating its effectiveness in comparison to other techniques (FCM, EFCM, FLICM, and M‐FLICM) in terms of accuracy in both noiseless and noisy conditions. It achieves impressive accuracy rates of 99.03% in noiseless conditions and 93.13% in noisy images, with an average execution time of 16.1 s.

Publisher

Wiley

Subject

Medical Laboratory Technology,Instrumentation,Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3