Subject
Artificial Intelligence,Computer Science Applications,General Engineering
Reference64 articles.
1. Abbasi, A., Hassan, A., & Milan, D. (2014). Benchmarking twitter sentiment analysis tools. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (p. 823–829). European Language Resources Association.
2. Sentiment analysis using deep learning architectures: A review;Ashima;Artificial Intelligence Review,2020
3. Opinion mining and information fusion: A survey;Balaz;Inf. Fusion,2016
4. Barbieri, F., Camacho-Collados, J., Espinosa Anke, L., & Neves, L. (2020). TweetEval: Unified benchmark and comparative evaluation for tweet classification. In Findings of the Association for Computational Linguistics: EMNLP 2020 (pp. 1644–1650). Online: Association for Computational Linguistics.
5. Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610–623).
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献