Extracting knowledge from customer reviews: an integrated framework for digital platform analytics

Author:

Kyriakidis Anastasios1ORCID,Tsafarakis Stelios1

Affiliation:

1. School of Production Engineering and Management Technical University of Crete Chania 73100 Greece

Abstract

AbstractOnline review sites play a crucial role in shaping consumer purchasing decisions, making the analysis of customer feedback essential for businesses. Given the complexity of these reviews, often including both quantitative and qualitative data, advanced analytical frameworks are necessary. To this end, this paper introduces an integrated framework for customer feedback analysis, combining aspect‐based sentiment analysis, multicriteria decision‐making, and a fuzzy rule‐based approach. The proposed system effectively processes both textual and numerical data from online reviews, enabling the extraction of actionable insights. To demonstrate its practical utility, we apply it to a real‐world dataset from a major European airline. The results illustrate the framework's effectiveness in identifying key factors influencing customer satisfaction and pinpointing areas needing improvement. Additionally, data‐driven recommendations are provided to support business decision‐making and enable the customization of products and services to better meet customer expectations.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3