WS-SSD: Achieving faster 3D object detection for autonomous driving via weighted point cloud sampling
-
Published:2024-09
Issue:
Volume:249
Page:123805
-
ISSN:0957-4174
-
Container-title:Expert Systems with Applications
-
language:en
-
Short-container-title:Expert Systems with Applications
Author:
Li XushengORCID, Wang ChengliangORCID, Zeng Zhuo
Reference44 articles.
1. Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., et al. (2020). nuScenes: A Multimodal Dataset for Autonomous Driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11621–11631). 2. Chen, Y., Li, Y., Zhang, X., Sun, J., & Jia, J. (2022). Focal Sparse Convolutional Networks for 3D Object Detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5428–5437). 3. Chen, X., Ma, H., Wan, J., Li, B., & Xia, T. (2017). Multi-View 3D Object Detection Network for Autonomous Driving. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1907–1915). 4. Deng, S., Liang, Z., Sun, L., & Jia, K. (2022). VISTA: Boosting 3D Object Detection via Dual Cross-VIew SpaTial Attention. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8448–8457). 5. Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., & Li, H. (2021). Voxel r-cnn: Towards high performance voxel-based 3d object detection. Vol. 35, In Proceedings of the AAAI conference on artificial intelligence (2), (pp. 1201–1209).
|
|