1. Amar, P., Ballet, P., Barlovatz-Meimon, G., Benecke, A., Bernot, G., Bouligand, Y., Bourguine, P., Delaplace, F., Delosme, J.-M., Demarty, M., Fishov, I., Fourmentin-Guilbert, J., Fralick, J., Giavitto, J.-L., Gleyse, B., Godin, C., Incitti, R., Képès, F., Lange, C., Sceller, L.L., Loutellier, C., Michel, O., Molina, F., Monnier, C., Natowicz, R., Norris, V., Orange, N., Pollard, H., Raine, D., Ripoll, C., Rouviere-Yaniv, J., Saier, M., Soler, P., Tambourin, P., Thellier, M., Tracqui, P., Ussery, D., Vincent, J.-C., Vannier, J.-P., Wiggins, P., Zemirline, A., 2003. Hyperstructures, genome analysis and I-cell. Acta Biotheoretica (in press).
2. Banatre, J.P., Metayer, D.L., 1986. A new computational model and its discipline of programming. Technical Report RR-0566, INRIA.
3. Berry, G., Boudol, G., 1990. The chemical abstract machine. In: Conference Record 17th ACM Symposium on Principles of Programmming Languages, POPL’90, San Francisco, CA, USA, 17–19 January, 1990. ACM Press, New York, pp. 81–94.
4. Using rewriting systems to compute left Kan extensions and induced actions of categories;Brown;J. Symbolic Comput.,2000
5. Bugrim, A.E., 2000. A logic-based approach for computational analysis of spatially distributed biochemical networks. In: ISMB, San Diego, CA, 2000.