Machine learning for detecting COVID-19 from cough sounds: An ensemble-based MCDM method
Author:
Publisher
Elsevier BV
Subject
Health Informatics,Computer Science Applications
Reference56 articles.
1. M. Salath, C. L. Althaus, R. Neher, S. Stringhini, E. Hodcroft, J. Fellay, M. Zwahlen, G. Senti, M. Battegay, A. Wilder-Smith, E. Isabella, E. Matthias, L. Nicola, COVID-19 epidemic in Switzerland: on the importance of testing, contact tracing and isolation, Swiss Med. Wkly..doi:10.4414/smw.2020.20225.
2. AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app;Imran;Inf. Med. Unlocked,2020
3. L. Wang, Z. Q. Lin, A. Wong, COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images, Sci. Rep. 10 (1). doi:10.1038/s41598-020-76550-z.
4. N. K. Chowdhury, R. Md. Muhtadir, M. A. Kabir, PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images, Health Inf. Sci. Syst. 8 (27). doi:10.1007/s13755-020-00119-3.
5. N. K. Chowdhury, M. A. Kabir, M. M. Rahman, N. Rezoana, ECOVNet: a highly effective ensemble based deep learning model for detecting COVID-19, PeerJ Comput. Sci. 7. doi:10.7717/peerj-cs.551.
Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CWBCM method to determine the importance of classification performance evaluation criteria in machine learning: Case studies of COVID-19, Diabetes, and Thyroid Disease;Omega;2024-09
2. A deep convolutional neural network approach using medical image classification;BMC Medical Informatics and Decision Making;2024-08-29
3. How to combine ML and MCDM techniques: an extended bibliometric analysis;Journal of Innovative Engineering and Natural Science;2024-07-22
4. SCMs: Systematic Conglomerated Models for Audio Cough Signal Classification;Algorithms;2024-07-08
5. SUPER-COUGH: A Super Learner-based ensemble machine learning method for detecting disease on cough acoustic signals;Biomedical Signal Processing and Control;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3