ECOVNet: a highly effective ensemble based deep learning model for detecting COVID-19

Author:

Chowdhury Nihad Karim1ORCID,Kabir Muhammad Ashad2ORCID,Rahman Md. Muhtadir1ORCID,Rezoana Noortaz1

Affiliation:

1. Department of Computer Science and Engineering, University of Chittagong, Chittagong, Bangladesh

2. School of Computing and Mathematics, Charles Sturt University, NSW, Australia

Abstract

The goal of this research is to develop and implement a highly effective deep learning model for detecting COVID-19. To achieve this goal, in this paper, we propose an ensemble of Convolutional Neural Network (CNN) based on EfficientNet, named ECOVNet, to detect COVID-19 from chest X-rays. To make the proposed model more robust, we have used one of the largest open-access chest X-ray data sets named COVIDx containing three classes—COVID-19, normal, and pneumonia. For feature extraction, we have applied an effective CNN structure, namely EfficientNet, with ImageNet pre-training weights. The generated features are transferred into custom fine-tuned top layers followed by a set of model snapshots. The predictions of the model snapshots (which are created during a single training) are consolidated through two ensemble strategies, i.e., hard ensemble and soft ensemble, to enhance classification performance. In addition, a visualization technique is incorporated to highlight areas that distinguish classes, thereby enhancing the understanding of primal components related to COVID-19. The results of our empirical evaluations show that the proposed ECOVNet model outperforms the state-of-the-art approaches and significantly improves detection performance with 100% recall for COVID-19 and overall accuracy of 96.07%. We believe that ECOVNet can enhance the detection of COVID-19 disease, and thus, underpin a fully automated and efficacious COVID-19 detection system.

Publisher

PeerJ

Subject

General Computer Science

Reference51 articles.

1. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation;Bach;PLOS ONE,2015

2. Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks;Chattopadhay,2018

3. PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images;Chowdhury;Health Information Science and Systems,2020

4. Can AI help in screening viral and COVID-19 Pneumonia?;Chowdhury;IEEE Access,2020

5. Actualmed COVID-19 chest x-ray data initiative;Chung,2020a

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3