Elemental composition of suspended particles from the surface waters of Lake Baikal in the zone affected by the Selenga River

Author:

Chebykin E.P.1,Goldberg E.L.2,Kulikova N.S.1

Affiliation:

1. Limnological Institute, Siberian Branch of the Russian Academy of Sciences, ul. Ulan-Batorskaya 3, Irkutsk, 664033, Russia

2. Institute of Archeology and Ethnography, pr. Akad. Lavrent’eva 17, Novosibirsk, 630090, Russia

Abstract

Abstract The elemental composition of suspended particles in surface waters of Lake Baikal has been studied by ICP MS along a transect of the zone affected by the Selenga River. The amount of terrigenous suspension in water was estimated from Al content, which decreases in a saltatory manner along the transect: 6.5–8.3 km offshore it decreases by an order of magnitude; 11–14 km offshore, by other 20 times; in the pelagic zone it remains almost unchanged. During the study period (late June 2001), the distribution limit of suspension from the Selenga River in the lake’s surface waters lays 11–14 km offshore. It has been found that pelagic suspension is more than 20 times richer in Ca, P, Zn, Cu, Ni, Sn, Mo, Bi, S, and Cd than littoral one (6.5 km offshore) in the zone affected by the Selenga River. This is mainly due to fine suspension (<1.2 μm), which was considerably richer in Ca, P, Zn, Cu, Ni, Sn, Mo, Sb, and Cd than coarser ones in the river. Fine suspension in Lake Baikal, both in the zone affected by the river and in the pelagic zone, is considerably (2–35 times) richer in most elements, except for typical terrigenous ones, than river one. This suggests that element enrichment takes place in the lake, probably owing to bioaccumulation and chemisorption. These processes may be affected by additional factors, because fine suspension from the zone affected by the river differs significantly from pelagic one in elemental composition.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3