Author:
Semenov Mikhail Y.,Semenov Yuri M.,Silaev Anton V.,Begunova Larisa A.
Abstract
The aim of this study was to obtain a detailed picture of the origin of the anthropogenic and natural inorganic solutes in the surface waters of the Lake Baikal watershed using limited data on solute sources. To reveal the origin of solutes, the chemical composition of water was considered as a mixture of solutes from different sources such as rocks and anthropogenic wastes. The end-member mixing approach (EMMA), based on the observation that the element ratios in water uncorrelated with one another are those that exhibit differences in values across the different types of rocks and anthropogenic wastes, was used for source apportionment. According to the results of correlation analysis, two tracers of sources of most abundant ions present in riverine waters were selected. The first tracer was the ratio of combined concentration of calcium and magnesium ions to concentration of potassium ion ((Ca2+ + Mg2+)/K+), and the second tracer was the ratio of sulfate and bicarbonate ion concentrations (SO42−/HCO3−). Using these tracers, three sources of main ions in water, such as sulfide-bearing silicate rocks, non-sulfide silicate rocks and carbonate rocks, were apportioned. The results of cluster analysis showed the possibility of using the ratios of strontium, iron, manganese, molybdenum, nickel, and vanadium concentrations (Sr/Fe, Sr/Mn, Ni/V, Mo/V) as tracers of the trace element sources. The use of these tracers and the obtained data on sources of main ions showed the possibility of identifying the natural trace element sources and distinguishing between natural and anthropogenic trace element sources.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献