The role of rocks saturated with metallic iron in the formation of ferric carbonate–silicate melts: experimental modeling under PT-conditions of lithospheric mantle

Author:

Bataleva Yu.V.1,Palyanov Yu.N.12,Sokol A.G.12,Borzdov Yu.M.1,Bayukov O.A.3

Affiliation:

1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

2. Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

3. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50, bld. 38, Krasnoyarsk, 660036, Russia

Abstract

Abstract Experimental modeling of the processes of formation of ferric carbonate–silicate melts through the carbonate–oxide–metal interaction is performed in the (Mg,Ca)CO3–SiO2–Al2O3–Fe0 system at 6.3 and 7.5 GPa and within 1150-1650 °C, using a multianvil high-pressure apparatus of “split-sphere” type (BARS). Two parallel reactions run in the subsolidus region (1150-1450 °C): decarbonation, producing pyrope-almandine (Fe# = 0.40–0.75) and CO2 fluid, and redox interaction between carbonate and Fe0, resulting in the crystallization of iron carbide in assemblage with magnesiowustite (Fe# = 0.75–0.85). It is shown that the reduction of carbonate or CO2 fluid by iron carbide and parallel redox interaction of magnesiowustite with CO2 produce graphite in assemblage with Fe3+-containing magnesiowüstite. In the temperature range of 1450-1650 °C, generation of carbonate-silicate melts coexisting with pyrope-almandine, magnesiowustite, magnetite, ferrospinel, and graphite takes place. The composition of the produced melts is as follows: SiO2 = 10–15 wt.%, Ʃ(FeO + Fe2O3) = 36–43 wt.%, and Fe3+/ƩFe = 0.18–0.23. These Fe3+-enriched carbonate-silicate melts/fluids are saturated with carbon and are the medium of graphite crystallization. Oxide and silicate phases (almandine, ferrospinel, and magnetite) coexisting with graphite are also characterized by high Fe3+/ƩFe values. It has been established that Fe3+-enriched carbonate-silicate melts can result from the interaction of Fe0-containing rocks with carbonated rocks. In the reduced mantle (with the presence of iron carbides or oxides), melts of this composition can be the source of carbon and the medium of graphite crystallization at once. After separation and ascent, these ferric carbonate-silicate melts can favor oxidizing metasomatism in the lithospheric mantle.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3