Experimental Modeling of Decarbonation Reactions, Resulting in the Formation of CO2 Fluid and Garnets of Model Carbonated Eclogites under Lithospheric Mantle P,T-Parameters

Author:

Bataleva Yuliya V.1ORCID,Novoselov Ivan D.1ORCID,Kruk Aleksei N.1,Furman Olga V.1,Palyanov Yuri N.1

Affiliation:

1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Koptyug Ave. 3, Novosibirsk 630090, Russia

Abstract

First experimental modeling of decarbonation reactions resulting in the formation of CO2-fluid and Mg, Fe, Ca, and Mn garnets, with composition corresponding to the garnets of carbonated eclogites of types I and II (ECI and ECII), was carried out at a wide range of lithospheric mantle pressures and temperatures. Experimental studies were performed on a multi-anvil high-pressure apparatus of a “split sphere” type (BARS), in (Mg, Fe, Ca, Mn)CO3-Al2O3-SiO2 systems (with compositional variations according to those in ECI and ECII), in the pressure interval of 3.0–7.5 GPa and temperatures of 1050–1450 °C (t = 10–60 h). A specially designed high-pressure cell with a hematite buffering container—preventing the diffusion of hydrogen into the platinum capsule—was used, in order to control the fluid composition. Using the mass spectrometry method, it was proven that in all experiments, the fluid composition was pure CO2. The resulting ECI garnet compositions were Prp48Alm35Grs15Sps02–Prp44Alm40Grs14Sps02, and compositions of the ECII garnet were Prp57Alm34Grs08Sps01–Prp68Alm23Grs08Sps01. We established that the composition of the synthesized garnets corresponds strongly to natural garnets of carbonated eclogites of types I and II, as well as to garnets from xenoliths of diamondiferous eclogites from the Robert Victor kimberlite pipe; according to the Raman characteristics, the best match was found with garnets from inclusions in diamonds of eclogitic paragenesis. In this study, we demonstrated that the lower temperature boundary of the stability of natural garnets from carbonated eclogites in the presence of a CO2 fluid is 1000 (±20) °C at depths of ~90 km, 1150–1250 (±20) °C at 190 km, and 1400 (±20) °C at depths of about 225 km. The results make a significant contribution to the reconstruction of the fluid regime and processes of CO2/carbonate-related mantle metasomatism in the lithospheric mantle.

Funder

IGM SB RAS

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference103 articles.

1. Fei, Y., Bertka, M.C., and Mysen, B.O. (1999). Mantle Petrology: Field Observation and High Pressure Experimentation: A Tribute to Francis, R. (Joe) Boyd, The Geochemical Society.

2. The deep carbon cycle and melting in Earth’s interior;Dasgupta;Earth Planet. Sci. Lett.,2010

3. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions;Walter;Science,2011

4. The redox budget of subduction zones;Evans;Earth Sci. Rev.,2012

5. Diamonds and the Geology of Mantle Carbon;Shirey;Rev. Mineral. Geochem.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3