Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer

Author:

Lavrent’ev Yu.G.1,Korolyuk V.N.1,Usova L.V.1,Nigmatulina E.N.1

Affiliation:

1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia

Abstract

Abstract The protocol for analysis of rock-forming mineral compositions by X-ray electron probe microanalysis used at the Institute of Geology and Mineralogy, Novosibirsk, Russia, is described. The analysis is conducted with a JXA-8100 electron probe microanalyzer capable to support a highly stable beam at relatively high probe currents for a long time. Elements that can be assayed range from sodium (atomic number Z = 11) to zinc (Z = 30). The operation conditions for routine analyses are substantiated: accelerating voltage 20 kV, probe current 50–100 nA, and signal accumulation time 10 s at both the peak and the background. The method of analytical problem formulation for measurements is presented. It is proven that the proprietary software is insufficient with the presence of the binary matrix effect and better correction methods are required. Metrological characteristics of the protocol have been studied. The variation coefficient, describing the reproducibility of results, averages 0.9% for major components (C > 10%), 2.5% for minor components (1 < C < 10%), and 6.8% for accessory components (0.3 < C < 1%). With still lower contents (0.05 < C < 0.3 %), the standard deviation of reproducibility is 0.02%. The values of the variation coefficient and standard deviation for measurement repeatability are approximately two times lower. The relative trueness of the method is within 1%. The detection limit (3σ criterion) is generally within 0.01–0.03%. It can be improved by an order of magnitude by increasing the accumulation time and probe current.

Publisher

GeoScienceWorld

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3