Ferric Iron in Eclogitic Garnet and Clinopyroxene from the V. Grib Kimberlite Pipe (NW Russia): Evidence of a Highly Oxidized Subducted Slab

Author:

Marras Giulia1ORCID,Mikhailenko Denis23,McCammon Catherine A4,Agasheva Elena5,Stagno Vincenzo1ORCID

Affiliation:

1. Sapienza Università University of Rome Department of Earth Sciences, , 00185 Rome, Italy

2. Ural Branch of the Russian Academy of Sciences Zavaritsky Institute of Geology and Geochemistry, , Ekaterinburg 620002, Russian Federation

3. Chinese Academy of Science State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, , Guangzhou 510640, China

4. Universität Bayreuth Bayerisches Geoinstitut, , D-95440 Bayreuth, Germany

5. Siberian Branch of the Russian Academy of Sciences Sobolev Institute of Geology and Mineralogy, , Novosibirsk 630090, Russian Federation

Abstract

Abstract Estimates of oxygen fugacity of eclogitic rocks are linked to the redox evolution of the oceanic protolith during subduction and its residence in the lithospheric mantle, and, based on knowledge of pressures and temperatures, allow modelling of the speciation of volatile elements and diamond (or graphite) versus carbonate stability. To date, the oxygen fugacity of mantle eclogites has been shown to vary between −6 (Kasai, Congo and Udachnaya, Siberia) and −0.1 (Udachnaya, Siberia) log units (relative to the fayalite–magnetite–quartz buffer, FMQ), linked to the low Fe3+ contents of garnets. In this study, we investigated the Fe oxidation state of coexisting garnet and clinopyroxene hand-picked out of 17 diamond-free high-MgO and low-MgO mantle eclogites (dated at 2.84 Ga) from the Grib kimberlite pipe (East-European platform). Measured Fe3+/∑Fe values range between 0.03 and 0.19 for garnet and 0.18–0.38 for clinopyroxene, the former being higher than what was measured previously in garnets equilibrated at mantle conditions. The Fe3+/∑Fe of the reconstructed bulk rock ranges between 0.10 and 0.15 for high-MgO eclogites and 0.10 and 0.24 for low-MgO eclogites (with uncertainties of ± 0.02 and ± 0.03 in both cases). Thermobarometric calculations result in equilibration pressures and temperatures of 3.0–5.2 (± 0.4) GPa and 720–1050 (± 60) °C for both high-MgO and low-MgO eclogites, slightly lower than previous P–T estimates of mantle eclogites from the Udachnaya kimberlite pipe (Siberian craton). At these conditions, ∆logfo2 (FMQ) calculated using the available oxythermobarometric model varies from −1.7 to −0.6 log units for high-MgO eclogites and from −2.9 to 0.9 log units for low-MgO eclogites. Samples recording ∆logfo2 (FMQ) ≤ −1 log units overlap with North Slave, West Africa and Udachnaya eclogites, with no difference among eclogite types. The average values of −1.2 (± 0.4) log units for high-MgO and −0.6 (± 1.1) log units for low-MgO eclogites suggest different redox conditions of basaltic protoliths during subduction worldwide. Previous geochemical studies on the same rock samples reported evidence of cryptic metasomatism in both garnet and clinopyroxene that we demonstrate being not recorded by their major elements, while modal metasomatism evidenced by the presence of phlogopite as a product of interaction with a kimberlitic melt only affects the MgO of the bulk rock. Therefore, we suggest that high Fe3+/∑Fe ratios for garnet (> 0.10) and for reconstructed bulk rocks in the case of both low-MgO and high-MgO samples cannot be due to metasomatic interaction with an oxidized fluid, but rather are the consequence of Fe3+ redistribution in an unusually oxidized mafic protolith upon metamorphism. Our results highlight the redox variability of eclogites of Archaean age at conditions more oxidized than present-day mid-ocean ridge basalts (MORBs) and imply an oxidizing nature of the convective mantle source where magma was formed with consequent speciation of C in the form of carbonate fluid explaining, therefore, the lack of eclogitic diamonds in V. Grib kimberlite pipe.

Funder

Russell Sage Foundation

IGG UB RAS and CAS PIFI

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3