Deep multisensor learning for missing-modality all-weather mapping

Author:

Zheng Zhuo,Ma Ailong,Zhang Liangpei,Zhong Yanfei

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Elsevier BV

Subject

Computers in Earth Sciences,Computer Science Applications,Engineering (miscellaneous),Atomic and Molecular Physics, and Optics

Reference30 articles.

1. Ba, J., Caruana, R., 2014. Do deep nets really need to be deep? In: Advances in neural information processing systems. pp. 2654–2662.

2. Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.

3. Encoder-decoder with atrous separable convolution for semantic image segmentation;Chen,2018

4. A multi-height lod1 model of all buildings in the Netherlands;Dukai;ISPRS Annals Photogram., Remote Sens. Spatial Inf. Sci.,2019

5. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery;Gao;Remote Sens. Environ.,2017

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decoupling Features for Remote Sensing Missing Modality Learning;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

2. SKD-Net: Spectral-based Knowledge Distillation in Low-Light Thermal Imagery for robotic perception;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. PIF-Net: A Deep Point-Image Fusion Network for Multimodality Semantic Segmentation of Very High-Resolution Imagery and Aerial Point Cloud;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Enhancing Unimodal Features Matters: A Multimodal Framework for Building Extraction;IEEE Transactions on Geoscience and Remote Sensing;2024

5. MultiSenseSeg: A Cost-Effective Unified Multimodal Semantic Segmentation Model for Remote Sensing;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3