1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-sudevan, V., Viégas, F., Vinyals, O., Warden, P., Wat-tenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. URL http://tensorflow.org/. Software available from tensorflow.org.
2. Artificial intelligence techniques applied as estimator in chemical process systems a literature survey;Ali;Expert Systems with Applications,2015
3. Deep machine learning - a new frontier in artificial intelligence research [research frontier];Arel;IEEE Computational Intelligence Magazine,2010
4. Boureau, Y.L., Ponce, J., and LeCun, Y. (2010). A theoretical analysis of feature pooling in visual recognition. In Proceedings of the 27th international conference on machine learning (ICML-10), 111–118.
5. Flexible, high performance convolutional neural networks for image classification;Ciresan;In IJCAI Proceedings-International Joint Conference on Artificial Intelligence,2011