Advancements in Machine Learning for Optimal Performance in Flotation Processes: A Review

Author:

Szmigiel Alicja1,Apel Derek B.1ORCID,Skrzypkowski Krzysztof2ORCID,Wojtecki Lukasz3ORCID,Pu Yuanyuan4

Affiliation:

1. School of Mining and Petroleum Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada

2. Faculty of Civil Engineering and Resource Management, AGH University of Krakow, 30-059 Krakow, Poland

3. GIG Central Mining Institute, 40-166 Katowice, Poland

4. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China

Abstract

Flotation stands out as a successful and extensively employed method for separating valuable mineral particles from waste rock. The efficiency of this process is subjected to the distinct physicochemical attributes exhibited by various minerals. However, the complex combination of multiple sub-processes within flotation presents challenges in controlling this mechanism and achieving optimal efficiency. Consequently, there is a growing dependence on machine learning methods in mineral processing research. This paper provides a comprehensive overview of machine learning and artificial intelligence techniques, presenting their potential applications in flotation processes. The review demonstrates advancements discussed in scholarly research over the past decade and highlights a growing interest in utilizing machine learning methods for monitoring and optimizing flotation processes, as demonstrated by the increasing number of studies in this field. Recent trends also suggest that the course of flotation process monitoring, and control will increasingly focus on the refinement and deployment of deep learning networks developed specifically for froth image extraction and analysis.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3