1. (P5, diamond)-free graphs revisited;Brandstädt;Discrete Appl. Math.,2004
2. A. Brandstädt, F.F. Dragan, H.-O. Le, R. Mosca, New classes of bounded clique-width, Extended abstract in: Conference Proceedings of WG'2002—Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol. 2573, Springer, Berlin, pp. 57–67; Theory of Computing Systems, to appear.
3. Stability number of bull- and chair-free graphs revisited;Brandstädt;Discrete Appl. Math.,2003
4. A. Brandstädt, C.T. Hoàng, I. Zverovich, Extension of claw-free graphs and (K1∪P4)-free graphs with substitutions, Rutcor Research Report RRR 28-2001, 2001, 〈http://rutcor.rutgers.edu/∼rrr〉.
5. A. Brandstädt, D. Kratsch, On the structure of (P5, gem)-free graphs, Manuscript, Discrete Appl. Math., 2000, accepted for publication.