1. L. Cayton, Algorithms for manifold learning, Technical Report, UCSD 2005.
2. H. Narayanan, S. Mitter, Sample complexity of testing the manifold hypothesis, in: J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. Zemel, A. Culotta (Eds.), Advances in Neural Information Processing Systems, vol. 23, 2010, pp. 1786–1794.
3. Nonlinear dimensionality reduction by locally linear embedding;Roweis;Science,2000
4. Hessian eigenmaps;Donoho;Natl. Acad. Sci.,2003
5. Laplacian eigenmaps for dimensionality reduction and data representation;Belkin;Neural Comput.,2003