Deep multi-scale convolutional transfer learning network: A novel method for intelligent fault diagnosis of rolling bearings under variable working conditions and domains
Author:
Funder
National Natural Science Foundation of China
Publisher
Elsevier BV
Subject
Artificial Intelligence,Cognitive Neuroscience,Computer Science Applications
Reference48 articles.
1. Cross-domain fault diagnosis using knowledge transfer strategy: a review;Zheng;IEEE Access,2019
2. Machinery health prognostics: a systematic review from data acquisition to RUL prediction;Lei;Mech. Syst. Signal Process.,2018
3. Data-driven fault diagnosis method based on compressed sensing and improved multi-scale network;Hu;IEEE Trans. Ind. Electron.,2019
4. Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks;Zhang;Mech. Syst. Signal Process.,2019
5. Deep decoupling convolutional neural network for intelligent compound fault diagnosis;Huang;IEEE Access,2018
Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A source free robust domain adaptation approach with pseudo-labels uncertainty estimation for rolling bearing fault diagnosis under limited sample conditions;Knowledge-Based Systems;2024-11
2. Parallel quantized dual-level fully connected classifier for bearing fault diagnosis;Engineering Applications of Artificial Intelligence;2024-10
3. Effects of various information scenarios on layer-wise relevance propagation-based interpretable convolutional neural networks for air handling unit fault diagnosis;Building Simulation;2024-08-19
4. A hybrid dynamic adversarial domain adaptation network with multi-channel attention mechanism for rotating machinery unsupervised fault diagnosis under varying operating conditions;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-07-26
5. A hybrid network TEdgeNeXt for data-limited and resource-constrained fault diagnosis;Journal of Vibration and Control;2024-07-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3