A hybrid network TEdgeNeXt for data-limited and resource-constrained fault diagnosis

Author:

Zhang Chenglong1,Qiao Zijian1ORCID,Li Hao1,Xu Xuefang2,Ning Siyuan1,Xie Chongyang1

Affiliation:

1. Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo, People’s Republic of China

2. School of Electrical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China

Abstract

In the field of intelligent machinery fault diagnosis, overcoming challenges arising from scarce labeled data and the demand for deployment on resource-constrained edge devices is imperative. To address these hurdles, this work aims to improve the ability of deep learning models to learn strong feature representations from limited data, while also reducing the model complexity. We presenting a novel network named TEdgeNeXt, the approach begins with a new signal-to-image conversion method, which is proved to be able to acquire less training data quantity. Structurally, the Convolutional (Conv.) Encoder initially is employed with depth-wise separable convolution to control the size of model rather than the traditional convolution, and the Split Depth-wise Transpose Attention (SDTA) encoder is consequently utilized by leveraging a multidimensional processing approach and the Multi-head Self-Attention which is across the channel dimensions instead of the spatial channel. By doing so, it effectively handles challenges such as high multiply-additions (MAdds) and increased latency through Flops and params. On the other hand, the fine-tune-based transfer learning technique is able to be extended in our approach for improving the capacity of generalizing. Ultimately, it indicates the noticeable improvements in Top-1 Accuracy (T1A), Mean Precision (MP), Mean Recall (MR), and Mean F1 score (MF1) across three distinct datasets.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Zhejiang Provincial Postdoctoral Science Foundation

Zhejiang Provincial Natural Science Foundation of China

Ningbo Natural Science Foundation

Ningbo Science and Technology Major Project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3