Abstract
A basic assumption in some climatic theories is that, given the physical properties of the atmosphere and the underlying ocean and land, specified environmental parameters (amount of solar heating, etc.) would determine a unique climate and that climatic changes therefore result from changes in the environment. The possibility that no such unique climate exists and that nondeterministic factors are wholly or partly responsible for long-period fluctuations of the atmosphere-ocean-earth system, is considered. A simple difference equation is used to illustrate the phenomena of transitivity, intransitivity, and almost-intransitivity. Numerical models of moderate size suggest that almost-intransitivity might lead to persistence of atmospheric anomalies for a whole season. The effect of this persistence could be to allow substantial anomalies to build up in the underlying ocean or land, perhaps as abnormal temperatures or excessive snow or ice. These anomalies could subsequently influence the atmosphere, leading to long-period fluctuations. The implications of this possibility for the numerical modeling of climate, and for the interpretation of the output of numerical models, are discussed.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献