Abstract
AbstractTemperatures for the past 2700 yr are estimated using well-dated pollen data from northwestern lower Michigan. The pollen data were sampled from sediment cores of four lakes along a 75-km transect, with fine-grained morainic soils around the two western lakes and sandy outwash soils around the lakes to the east. Climatic reconstructions based on the pollen data from the sandy sites show less temperature change than the reconstructions from the other sites, because variations in the composition of the vegetation at the sandy sites are edaphically restricted. One of the cores studied was dated by counting visible annual laminations (varves). The cores from the other lakes were dated based on three radiocarbon dates per core as well as the historically determined age of the settlement horizons. All the time scales were cross-checked using pollen-stratigraphic correlation between the four sites. A calibration function was developed using a network of modern pollen and climate data covering all of lower Michigan. Based on this calibration function, the 2700-yr reconstruction for Marion Lake indicates an estimated growing-season temperature range of 1.3°C between extreme 30-yr means. Mild conditions persisted prior to ca. A.D. 400, but a cold interval occurred between ca. A.D. 500 and 800. The well-marked warm period evident from ca. A.D. 1000 to 1200 was the last time when temperatures were about equal to the 1931–1960 mean. A prolonged longed cooling occurred after A.D. 1200 and reached 1°C below the 1931–1960 mean by the 1700s. A warming of 0.5°C is indicated from ca. A.D. 1750 to 1850. The estimated temperatures for the 1830s at Marion Lake agree with the instrumental data for that period and this provides some validation of the calibration-function results.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)
Cited by
105 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献