Holocene geo-ecological evolution of Lower Geyser Basin, Yellowstone National Park (USA)

Author:

Schiller Christopher M.ORCID,Whitlock Cathy,Brown Sabrina R.

Abstract

AbstractChanges in climate and fire regime have long been recognized as drivers of the postglacial vegetation history of Yellowstone National Park, but the effects of locally dramatic hydrothermal activity are poorly known. Multi-proxy records from Goose Lake have been used to describe the history of Lower Geyser Basin where modern hydrothermal activity is widespread. From 10,300 cal yr BP to 3800 cal yr BP, thermal waters discharged into the lake, as evidenced by the deposition of arsenic-rich sediment, fluorite mud, and relatively high δ13Csediment values. Partially thermal conditions affected the limnobiotic composition, but prevailing climate, fire regime, and rhyolitic substrate maintained Pinus contorta forest in the basin, as found throughout the region. At 3800 cal yr BP, thermal water discharge into Goose Lake ceased, as evidenced by a shift in sediment geochemistry and limnobiota. Pollen and charcoal data indicate concurrent grassland development with limited fuel biomass and less fire activity, despite late Holocene climate conditions that were conducive to expanded forest cover. The shift in hydrothermal activity at Goose Lake and establishment of the treeless geyser basin may have been the result of a tectonic event or change in hydroclimate. This record illustrates the complex interactions of geology and climate that govern the development of an active hydrothermal geo-ecosystem.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Reference110 articles.

1. Die cymbellioden Diatomeen. Eine Monographie der weltweit bekannten Taxa. Teil 1. Allgemeines und Encyonema Part;Krammer;Bibliotheca Diatomologica,1997

2. Hydrothermal alteration in research drill hole Y-2, Lower Geyser Basin, Yellowstone National Park, Wyoming;Bargar;American Mineralogist,1981

3. Shaw Chraïbi, V.L. , 2016. A Paleolimnological Analysis of the Hierarchy of Environmental Controls on the Resilience of Aquatic Communities in Yellowstone National Park, USA. PhD dissertation, University of Nebraska, Lincoln, USA.

4. Arnold, P.G. , Sharpe, F.P. , 1967. Summary Report of Lake and Stream Investigations for 1966. U.S. Fish and Wildlife Service, Yellowstone National Park, WY. Fishery Management Program Lake and Stream Surveys. 102 pp.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3