1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2016, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467 [cs]〈http://arxiv.org/abs/1603.04467〉.
2. Biological responses of hybridoma cells to hydrodynamic shear in an agitated bioreactor;Abu-Reesh;Enzyme Microb Technol,1991
3. Kinetic models in industrial biotechnology - Improving cell factory performance;Almquist;Metabol. Eng.,2014
4. Ambrogioni, L., Güçlü, U., van Gerven, M.A.J., Maris, E., 2017, The Kernel Mixture Network: A Nonparametric Method for Conditional Density Estimation of Continuous Random Variables. arXiv:1705.07111 [stat]〈http://arxiv.org/abs/1705.07111〉.
5. Theory of reproducing kernels;Aronszajn;Trans. Amer. Math. Soc.,1950