Quantifying the hydrodynamic stress for bioprocesses

Author:

Kaya Umut12ORCID,Gopireddy Srikanth12,Urbanetz Nora1,Kreitmayer Diana1,Gutheil Eva3,Nopens Ingmar2,Verwaeren Jan2

Affiliation:

1. Supply Chain Operations, Pharmaceutical Development Daiichi Sankyo Europe GmbH Pfaffenhofen Germany

2. Department of Data Analysis and Mathematical Modelling Ghent University Ghent Belgium

3. Interdisciplinary Center for Scientific Computing Heidelberg University Heidelberg Germany

Abstract

AbstractHydrodynamic stress is an influential physical parameter for various bioprocesses, affecting the performance and viability of the living organisms. However, different approaches are in use in various computational and experimental studies to calculate this parameter (including its normal and shear subcomponents) from velocity fields without a consensus on which one is the most representative of its effect on living cells. In this letter, we investigate these different methods with clear definitions and provide our suggested approach which relies on the principal stress values providing a maximal distinction between the shear and normal components. Furthermore, a numerical comparison is presented using the computational fluid dynamics simulation of a stirred and sparged bioreactor. It is demonstrated that for this specific bioreactor, some of these methods exhibit quite similar patterns throughout the bioreactor—therefore can be considered equivalent—whereas some of them differ significantly.

Funder

Daiichi Sankyo Europe

Publisher

Wiley

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3