Author:
Wei Hai-Zhen,Lei Fang,Jiang Shao-Yong,Lu Hua-Yu,Xiao Ying-Kai,Zhang Han-Zhi,Sun Xue-Feng
Abstract
AbstractWe investigated the boron isotopic composition in loess–paleosol sequences in five different profiles in the Chinese Loess Plateau. Three possible boron sources are identified: atmospheric input, carbonates, and weathered silicate rocks. Variations of [Sr], [B], δ11B and the magnetic susceptibility correlate well with the pedogenetic intensity in three out of the five studied profiles, where pedogenesis under a cold–dry climate indicates lower δ11B, lower [B], lower magnetic susceptibility and higher [Sr] values. Exceptions to the variations between the δ11B and other known proxies were observed in arenaceous soils and the Red Clay sequence: the former suggested that vertical redistribution probably occurred with the boron migration, and the latter indicated an unknown mechanism of susceptibility enhancement. A better correlation between the δ11B and magnetic susceptibility and the quantitative estimation of boron budget from each source confirms the influence of paleoenvironmental changes on boron geochemical cycle. Significant positive correlations in Sr/Ca vs. B/Ca and Mg/Ca vs. B/Ca reflect consistent enrichment behavior of those mobile elements into calcium carbonate. The preliminary results imply that boron isotopic compositions in soils can be a potential geochemical proxy to reconstruct the paleoenvironmental changes in loess–paleosol sequences.
Funder
National Global Change Program
National Natural Science Foundation of China
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献