Leachate Lithium Characteristics of Loess‐paleosol Sequences on the Chinese Loess Plateau and their Paleoclimatic Significance

Author:

JIA Peng12,FU Chaofeng12,HE Maoyong2,LIU Junfeng1,LIU Na3,LI Yulong24,YANG Kaiyuan25

Affiliation:

1. School of Earth Science and Resources Chang'an University Xi'an 710054 China

2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment Chinese Academy of Sciences Xi'an 710061 China

3. Department of Geological Engineering Qinghai University Xining 810016 China

4. Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes Chinese Academy of Sciences Xining 810008 China

5. School of Water and Environment Chang'an University Xi'an 710054 China

Abstract

AbstractThe geochemical components of the leachate from loess‐paleosol deposits can provide information about climate‐related post‐depositional processes. For example, leachate lithium ([Li]leachate) is a potential paleoclimate proxy because lithium is a typical lithophile element that is readily adsorbed by clay minerals during weathering and pedogenesis, and thus stratigraphic variations in [Li]leachate can reflect these processes. We investigated the [Li]leachate values of two loess‐paleosols profiles (the Luochuan and Weinan sections), on a north–south climatic gradient on the Chinese Loess Plateau. Independent paleoclimate information was provided by measurements of magnetic susceptibility, grain size, Rb/Sr ratios, and clay mineral content. During the last glacial‐interglacial period, [Li]leachate increased from 0.39 to 1.97 μg/g at Luochuan and from 0.67 to 2.45 μg/g at Weinan, mainly due to increasing pedogenesis. Based on these results we developed a conceptual model to explain the variations in [Li]leachate. Li+ within loess layers is mainly derived from dust input and the decomposition of primary minerals, influenced by the East Asian winter monsoon, while in paleosol layers Li+ is mainly derived from clay mineral adsorption during pedogenic processes, influenced by the East Asian summer monsoon.

Publisher

Wiley

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3