Paleoecology and high-resolution paleohydrology of a kettle peatland in upper Michigan

Author:

Booth Robert K.,Jackson Stephen T.,Gray Catherine E.D.

Abstract

We investigated the developmental and hydrological history of a Sphagnum-dominated, kettle peatland in Upper Michigan using testate amoebae, plant macrofossils, and pollen. Our primary objective was to determine if the paleohydrological record of the peatland represents a record of past climate variability at subcentennial to millennial time scales. To assess the role of millennial-scale climate variability on peatland paleohydrology, we compared the timing of peatland and upland vegetation changes. To investigate the role of higher-frequency climate variability on peatland paleohydrology, we used testate amoebae to reconstruct a high-resolution, hydrologic history of the peatland for the past 5100 years, and compared this record to other regional records of paleoclimate and vegetation. Comparisons revealed coherent patterns of hydrological, vegetational, and climatic changes, suggesting that peatland paleohydrology responded to climate variability at millennial to sub-centennial time scales. Although ombrotrophic peatlands have been the focus of most high-resolution peatland paleoclimate research, paleohydrological records from Sphagnum-dominated, closed-basin peatlands record high-frequency and low-magnitude climatic changes and thus represent a significant source of unexplored paleoclimate data.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Reference63 articles.

1. Paleoecological aspects of the Red Lake Peatland, northern Minnesota

2. Invasions of forest communities during the Holocene: Beech and hemlock in the Great Lakes region;Davis,1987

3. Diatom indicators of peatland development at Pogonia Bog Pond, Minnesota, USA

4. Michigan Flora III. Dicots (Pyrolaceae–Compositae);Voss,1996

5. Temporal and spatial patterns of Holocene dune activity on the Great Plains of North America: megadroughts and climate links

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3