Hyperspectral indices developed from the low order fractional derivative spectra can capture leaf dry matter content across a variety of species better
Author:
Funder
Shizuoka University
National Natural Science Foundation of China
Publisher
Elsevier BV
Subject
Atmospheric Science,Agronomy and Crop Science,Global and Planetary Change,Forestry
Reference56 articles.
1. A possible fractional order derivative and optimized spectral indices for assessing total nitrogen content in cotton;Abulaiti;Comput. Electron. Agric.,2020
2. Estimating leaf functional traits by inversion of PROSPECT: assessing leaf dry matter content and specific leaf area in mixed mountainous forest;Ali;Int. J. Appl. Earth Obs. Geoinf.,2016
3. Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests;Asner;Ecol. Appl.,2011
4. Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second-derivative analysis;Becker;Remote Sens. Environ.,2005
5. Quantifying leaf chlorophyll concentration of sorghum from hyperspectral data using derivative calculus and machine learning;Bhadra;Remote Sens. (Basel),2020
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improving UAV hyperspectral monitoring accuracy of summer maize soil moisture content with an ensemble learning model fusing crop physiological spectral responses;European Journal of Agronomy;2024-10
2. Hyperspectral Indices Developed from Fractional-Order Derivative Spectra Improved Estimation of Leaf Chlorophyll Fluorescence Parameters;Plants;2024-07-12
3. Estimation of chlorophyll content of Cinnamomum camphora leaves based on hyperspectral and fractional order differentiation;International Journal of Remote Sensing;2024-07-11
4. Synergistic retrieval of mangrove vital functional traits using field hyperspectral and satellite data;International Journal of Applied Earth Observation and Geoinformation;2024-07
5. Hyperspectral Estimation of Chlorophyll Content in Grape Leaves Based on Fractional-Order Differentiation and Random Forest Algorithm;Remote Sensing;2024-06-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3