Hyperspectral Estimation of Chlorophyll Content in Grape Leaves Based on Fractional-Order Differentiation and Random Forest Algorithm

Author:

Li Yafeng12,Xu Xingang12ORCID,Wu Wenbiao2,Zhu Yaohui1,Yang Guijun2,Yang Xiaodong2,Meng Yang2,Jiang Xiangtai2,Xue Hanyu12ORCID

Affiliation:

1. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China

2. Key Laboratory of Quantitative Remote Sensing in Ministry of Agriculture and Rural Affairs, Information Technology Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China

Abstract

Chlorophyll, as a key component of crop leaves for photosynthesis, is one significant indicator for evaluating the photosynthetic efficiency and developmental status of crops. Fractional-order differentiation (FOD) enhances the feature spectral information and reduces the background noise. In this study, we analyzed hyperspectral data from grape leaves of different varieties and fertility periods with FOD to monitor the leaves’ chlorophyll content (LCC). Firstly, through sensitive analysis, the fractional-order differential character bands were identified, which was used to construct the typical vegetation index (VI). Then, the grape LCC prediction model was built based on the random forest regression algorithm (RFR). The results showed the following: (1) FOD differential spectra had a higher sensitivity to LCC compared with the original spectra, and the constructed VIs had the best estimation performance at the 1.2th-order differential. (2) The accuracy of the FOD-RFR model was better than that of the conventional integer-order model at different fertility periods, but there were differences in the number of optimal orders. (3) The LCC prediction model for whole fertility periods achieved good prediction at order 1.3, R2 = 0.778, RMSE = 2.1, and NRMSE = 4.7%. As compared to the original reflectance spectra, R2 improved by 0.173; RMSE and NRMSE decreased, respectively, by 0.699 and 1.5%. This indicates that the combination of FOD and RFR based on hyperspectral data has great potential for the efficient monitoring of grape LCC. It can provide technical support for the rapid quantitative estimation of grape LCC and methodological reference for other physiological and biochemical indicators in hyperspectral monitoring.

Funder

Key Science and Technology Special Project of Yunnan Province

National Natural Science Foundation

National Key Research and Development Program

National Modern Agricultural Industry Technology System

Publisher

MDPI AG

Reference68 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3