1. Human-level control through deep reinforcement learning;Mnih;Nature,2015
2. H.V. Hasselt, A. Guez, D. Silver, Deep Reinforcement Learning with Double Q-Learning, in: D. Schuurmans, M.P. Wellman (Eds.), Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12–17, 2016, Phoenix, Arizona, USA, AAAI Press, 2016, pp. 2094–2100. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389.
3. Z. Wang, T. Schaul, M. Hessel, H.V. Hasselt, M. Lanctot, N.D. Freitas, Dueling Network Architectures for Deep Reinforcement Learning, in: M.-F. Balcan, K.Q. Weinberger (Eds.), Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19–24, 2016, vol. 48 of JMLR Workshop and Conference Proceedings, JMLR.org, 2016, pp. 1995–2003. URL:http://proceedings.mlr.press/v48/wangf16.html.
4. Induced states in a decision tree constructed by Q-learning;Hwang;Inf. Sci.,2012
5. M. Hausknecht, P. Stone, Deep Recurrent Q-Learning for Partially Observable MDPs, in: 2015 AAAI Fall Symposia, Arlington, Virginia, USA, November 12–14, 2015, AAAI Press, 2015, pp. 29–37, arXiv: 1507.06527. URL: http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11673.