Privacy-Preserving Classification on Deep Learning with Exponential Mechanism

Author:

Ju Quan,Xia Rongqing,Li ShuhongORCID,Zhang Xiaojian

Abstract

AbstractHow to protect the privacy of training data in deep learning has been the subject of increasing amounts of related research in recent years. Private Aggregation of Teacher Ensembles (PATE) uses transfer learning and differential privacy methods to provide a broadly applicable data privacy framework in deep learning. PATE combines the Laplacian mechanism and the voting method to achieve deep learning privacy classification. However, the Laplacian mechanism may greatly distort the histogram vote counts of each class. This paper proposes a novel exponential mechanism with PATE to ensure the privacy protection. This proposed method improves the protection effect and accuracy through the screening algorithm and uses the differential privacy combination theorems to reduce the total privacy budget. The data-dependent analysis demonstrates that the exponential mechanism outperforms the original Laplace mechanism. Experimental results show that the proposed method can train models with improved accuracy while requiring a smaller privacy budget when compared to the original Pate framework.

Publisher

Springer Science and Business Media LLC

Reference34 articles.

1. Li, Y., Zhang, H., Xue, X., Jiang, Y., Shen, Q.: Deep learning for remote sensing image classification: a survey. Wiley Interdisciplinary Rev. 8(6), e1264 (2018)

2. Wang, W., Yang, Y., Wang, X., Wang, W., Li, J.: Development of convolutional neural network and its application in image classification: a survey. Opt. Eng. 58(4), 040901 (2019)

3. Zou, Z., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: A survey. arXiv preprint arXiv:1905.05055.019, (2019)

4. Borji, A., Cheng, M.-M., Hou, Q., Jiang, H., Li, J.: Salient object detection: a survey. Comput. Visual Media 5(2), 117 (2019)

5. Sukanya, C., Gokul, R., Paul, V.: A survey on object recognition methods. Int. J. Sci. Eng. Comput. Technol. 6(1), 48 (2016)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3