Author:
Li Taiqiang,Zhang Zhen,Qian Heng,Wang Qiuyue,Su Guanqun,Meng Lingzhen
Publisher
Springer Nature Singapore
Reference16 articles.
1. Tran, H.Y., Hu, J., Pota, H.R.: Smart meter data obfuscation with a hybrid privacy-preserving data publishing scheme without a trusted third party. IEEE Internet Things J. 9(17), 16080–16095 (2022)
2. Mehta, B.B., Rao, U.P.: Improved l-diversity: scalable anonymization approach for privacy preserving big data publishing. J. King Saud Univ.-Comput. Inform. Sci. 34(4), 1423–1430 (2022)
3. Qian, J., Jiang, H., Yu, Y., Wang, H., Miao, D.: Multi-level personalized k-anonymity privacy-preserving model based on sequential three-way decisions. Expert Syst. Appl. 239, 122343 (2024)
4. Yang, G.M., Yang, J., Zhang, J.P.: Achieving (alpha, k)-anonymity via clustering in data publishing. Dianzi Xuebao (Acta Electronica Sinica) 39(8), 1941–1946 (2011)
5. Zhao, Y., Chen, J.: A survey on differential privacy for unstructured data content. ACM Comput. Surv. 54(10s), 1–28 (2022)