Multi-objective design of thickness and curvature of a bendable structure considering delamination and strength characteristics

Author:

Lee Hyunseok1,Chae Han-Seok2,Joo Won-Seok2,Lee Jongsoo1

Affiliation:

1. School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea

2. MT Department, Mobile Communication Company, LG Electronics, 10, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796 Korea

Abstract

Abstract The present study explores the finite element analysis and design optimization of a multi-layered bendable structure (i.e., a device of smart watch) considering delamination characteristics and materials strength conditions. The materials used for device and rubber in the smart watch are polycarbonate and thermoplastic polyurethane, respectively. Mooney-Rivlin model is employed to accommodate the hyperelastic behavior of rubber under large deformation. An evaluation of the delamination between layers and adhesive of the smart watch is conducted based on the cohesive zone model. The present study suggests the physical definitions of the vertical gap and sliding distance to describe the debonding/delamination properties in case of a bendable structure undergoing a large deformation. In the optimal design for the glass thickness, display thickness and radius of curvature, the bi-objective formal optimization is formulated to minimize both the vertical gap and sliding distance subjected to constraints on materials strength requirements of glass stress and display stress. The optimal design solutions are obtained using 2nd order polynomial based response surface models and a non-dominated sorting genetic algorithm (NSGA-II) in the context of multi-objective approximate optimization. In the optimization result, the sliding distance is improved by 25.64% with the secured stress limits compared to an initial design. The sliding distance value has been more enhanced under the contribution of the shear mode of delamination than the vertical gap under the normal mode. The study accommodates more enhanced design solutions to minimize debonding/delamination properties under strength requirements. Highlights This work conducts the design optimization of a multi-layered bendable structure (i.e., a smart watch). The delamination and materials strength requirements are considered. The delamination between layers and adhesive is performed based on the cohesive zone model. Vertical gap and sliding distance to represent delamination properties are suggested. The sliding distance is improved by 25.64% with the secured stress limits.

Funder

Multimedia Communication Research Center of LG Electronics, Seoul, Korea

National Research Foundation of Korea

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3