Transcriptional profiling of Pseudomonas aeruginosa mature single- and dual-species biofilms in response to meropenem

Author:

Alam Farhana1,Blair Jessica M. A.2,Hall Rebecca A.3ORCID

Affiliation:

1. Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK

2. Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK

3. Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK

Abstract

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen frequently isolated from chronic infections of the cystic fibrosis lung and burn wounds, and is a major cause of antimicrobial-resistant nosocomial infections. P. aeruginosa is frequently co-isolated with the opportunistic fungal pathogen Candida albicans, with the presence of C. albicans in dual-species biofilms promoting tolerance to meropenem. Here, transcription profiling of mature P. aeruginosa single- or dual-species biofilms was carried out to understand the molecular mechanism(s) by which C. albicans enhances meropenem tolerance. C. albicans appeared to have a mild impact on the transcriptome of P. aeruginosa mature biofilms, with most differentially regulated genes being involved in interkingdom interactions (i.e. quorum sensing and phenazine biosynthesis). The addition of meropenem to mature single- or dual-species biofilms resulted in a significant bacterial transcriptional response, including the induction of the beta-lactamase, ampC, genes involved in biofilm formation. P. aeruginosa elicited a similar transcriptional response to meropenem in the presence of C. albicans, but C. albicans promoted the expression of additional efflux pumps, which could play roles in increasing the tolerance of P. aeruginosa to meropenem.

Funder

Wellcome Trust

Medical Research Council

Biotechnology and Biological Sciences Research Council

Publisher

Microbiology Society

Subject

Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3