The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway

Author:

Crauwels Marion1,Donaton Monica C. V.1,Pernambuco Maria Beatriz1,Winderickx Joris1,de Winde Johannes H.1,Thevelein Johan M.1

Affiliation:

1. Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit te Leuven, Kardinaal Mercierlaan 92, B-3001 Leuven-Heverlee, Flanders, Belgium

Abstract

Summary: In cells of the yeast Saccharomyces cerevisiae, trehalase activation, repression of CTT1 (catalase), SSA3 (Hsp70) and other STRE-controlled genes, feedback inhibition of cAMP synthesis and to some extent induction of ribosomal protein genes is controlled by the Ras-adenylate cyclase pathway and by the fermentable-growth-medium-induced pathway (FGM pathway). When derepressed cells are shifted from a non-fermentable carbon source to glucose, the Ras-adenylate cyclase pathway is transiently activated while the FGM pathway triggers a more lasting activation of the same targets when the cells become glucose-repressed. Activation of the FGM pathway is not mediated by cAMP but requires catalytic activity of cAMP-dependent protein kinase (cAPK; Tpk1, 2 or 3). This study shows that elimination of Sch9, a protein kinase with homology to the catalytic subunits of cAPK, affects all target systems in derepressed cells in a way consistent with higher activity of cAPK in vivo. In vitro measurements with trehalase and kemptide as substrates confirmed that elimination of Sch9 enhances cAPK activity about two- to threefold, in both the absence and presence of cAMP. In vivo it similarly affected the basal and final level but not the extent of the glucose-induced responses in derepressed cells. The reduction in growth rate caused by delation of SCH9 is unlikely to be responsible for the increase in cAPK activity since reduction of growth rate generally leads to lower cAPK activity in yeast. On the other hand, deletion of SCH9 abolished the responses of the protein kinase A targets in glucose-repressed cells. Re-addition of nitrogen to cells starved for nitrogen in the presence of glucose failed to trigger activation of trehalase, caused strongly reduced and aberrant repression of CTT1 and SSA3, and failed to induce the upshift in RPL25 expression. From these results three conclusions can be drawn: (1) Sch9 either directly or indirectly reduces the activity of protein kinase A; (2) Sch9 is not required for glucose-induced activation of the Rasadenylate cyclase pathway; and (3) Sch9 is required for nitrogen-induced activation of the FGM pathway. The latter indicates that Sch9 might be the target of the FGM pathway rather than cAPK itself.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3