Restoration of wild-type virulence to Tri5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation

Author:

Proctor Robert H.1,Hohn Thomas M.2,McCormick Susan P.2

Affiliation:

1. Bioactive Agents Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, USA

2. Mycotoxin Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agricultural Research Service, Peoria, IL 61604, USA

Abstract

Summary: Gibberella zeae is a pathogen of small grain crops and produces trichothecene mycotoxins in infected host tissue. The role of trichothecenes in the virulence of G. zeae was previously investigated using trichothecene-non-producing mutants that were generated via transformation-mediated disruption of a gene (Tri5) that encodes the first enzyme in the trichothecene biosynthetic pathway. The mutants were less virulent on some hosts than the wild-type strain from which they were derived. Here, we used two approaches to determine whether the reduced virulence of mutants was due specifically to Tri5 disruption or to non-target effects caused by the transformation process. First, we generated a revertant from a Tri5 disruption mutant by allowing the mutant to pass through the sexual phase of its life cycle. In approximately 2% of the resulting progeny the disrupted Tri5 had reverted to wild-type; however, only one of three revertant progeny also regained the ability to produce trichothecenes. In the second approach, we complemented the Tri5 mutation in a disruption mutant by transforming the mutant with a plasmid carrying a functional copy of Tri5. In all transformants examined, the ability to produce trichothecenes was restored. The restoration of trichothecene production in the revertant progeny and in the complemented mutant was accompanied by restoration of wild-type or near wild-type levels of virulence on wheat seedlings (cultivar Wheaton). The results indicate that the reduced virulence of the mutants was caused by disruption of Tri5 rather than non-target effects resulting from the transformation process. The results also provide further evidence that trichothecenes contribute to the virulence of plant-pathogenic fungi.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3