NX Trichothecenes Are Required for Fusarium graminearum Infection of Wheat

Author:

Hao Guixia1ORCID,McCormick Susan1,Tiley Helene1,Gutiérrez Santiago2,Yulfo-Soto Gabdiel13,Vaughan Martha M.1ORCID,Ward Todd J.1

Affiliation:

1. USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit. 1815 N. University, Peoria, IL 61604, U.S.A.

2. Molecular Biology Department, University of Leon, Campus de Ponferrada, Avda. Astorga s/n 24400, Ponferrada, Spain

3. Oak Ridge Institute for Science and Education, USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL 61604, U.S.A.

Abstract

Fusarium graminearum causes Fusarium head blight (FHB) on wheat and barley and contaminates grains with various mycotoxins that are toxic to humans and animals. Deoxynivalenol (DON), a type B trichothecene, is an essential virulence factor that is required for F. graminearum to spread within a wheat head. Recently, novel type A trichothecenes NX-2 and NX-3 (NX) have been found in F. graminearum. NX trichothecenes lack a keto group at the C8 position. To determine if NX trichothecenes play a role similar to that of DON during F. graminearum infection, deletion mutants of TRI5, the first gene for trichothecene biosynthesis, were generated from strains PH-1, NRRL46422, and NRRL44211 (hereafter 44211) representing the 15-acetyl-DON, 3-acetyl-DON, and NX chemotypes. No trichothecene production was detected in any of the Δ tri5 mutants in cultures or inoculated wheat heads. FHB symptoms were restricted to the inoculated wheat spikelets when point-inoculated with the Δ tri5 mutants, confirming the necessity of NX and DON for FHB spread. Furthermore, whole-head dip inoculations revealed significant reductions in disease and fungal biomass in wheat heads inoculated with 44211Δ tri5 compared with 44211. Introduction of the native 44211 TRI5 and a Trichoderma arundinaceum TRI5 ortholog in the 44211Δ tri5 mutant complemented trichothecene production in vitro; however, introducing both TRI5 partially restored wild-type levels of NX in infected heads. Our results demonstrate that NX trichothecenes play an important role in Fusarium graminearum initial infection as well as FHB spread. Thus, TRI5 may serve as an ideal target to control plant infection, FHB spread, and mycotoxin production simultaneously. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

U.S. Department of Agriculture, Agricultural Research Service

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3